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PREFACE

»
This report is the first draft of what we hope will cventually be
a comprechensive treuatise on the theory and calculation of EMP coupling to
systems located in the source reglon.
There has becen u strong tendency for many years to rely on computer f
codes ftor EMP coupling calculations. We have noticed that computer codes 3
built in the absence of theoretical understanding almoust always give the ,

wrong answer for the right problem. cven though they may give the right }
answer for the wrong problewm. Source-region coupling, being only a little ?;
more difficult subject than LMP env ronments, is guite amenable to Ig
theoretical analysis, and the prescent report shows Low such analysis can be jP
carricd out for some important exmmmples, g%
]
We hope to add to this repeort over the next foew yecars. BMore i
examples are neceded, A problem rot discussed in the present report is the ji
i ceffect of brealdown in air fe.g., nuclear lightning) and in the soil on !%
t'. coupled currents. lhere are reasonable prospects that sufficient progress ?i
' will be made on these problems in the next ycar or so that they can be %E
included. Further, experience with real systems such as MX und LoADS may show ;i
us other problems that need analysis, We therefore hope that the copies of };
this report will not be bound so tightly that they cannot be supplemented by ‘L
revisions and further chapters. ;;
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_ CHAPTER 1
; INTRODUCTION AND BASIC EQUATIONS

1.1 INTRODUCTION

A nuclear explesion on or near the air-ground interface produces

a largé electromagnetic pulse (EMP). The principal source of the EMP is

the current of Compton re-:5il electrons resulting from collisions of gamma
rays with the clectrons in air molecules. The Compton current is signifi-
cant out to distances of several kilometers from megaton explosions. Within

i this source repion, the air conductivity, associated with secondory

ionization produced by the Compton electrons, has a strong influence on the
i fields generated. The presence of a conducting ground also has a strong

influenrce. !

§ Calculations of the coupling of electromagnetic energy into systems

located within the source region must take into account the exictence of the
gamma rays, the Compton current, and the air conductivity, s well as the

EMP fields. Thus source region coupling is more complicated than free-ficll ;

coupling, where only the fields need to be considered. Nevertheless, a

uscful approximate theory of source region coupling can be constructed, and

this report presents the theory for coupling to some simple but practically

relevant system geometries. The thcory will hopefully be extended to other

peometries as necds arise. :

The coupling theory presented here closely parallels the theory

of source-region EMP environments developed previously by this author
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(References 1-2 to 1-4). The latter theory was important in that it:

e gave the first predictions of general EMP environments;

) showed what parameters EMP depends on;

. showed how to build competent computer codes for more detailed
predictions;

° provided accuracy tests for the codes.

The goals and uses of the theory of source-region coupling are similar:

° to make approximate predictions of coupled currents and
voltages, especially in regimes where present computer

codes are not valid;
. to test computer codes and show how to improve them;

° to provide understanding of coupling and how it depends on

parameters;

. to allow other scientists to judge the correctness of

coupling predictions.,

It is thus hoped that this report will be useful to a varicty of
readers, from engineers faced with the task of making predictions for actual
systems to scientists who need or wish to judge the adequacy of our under-
standing of the phenomena and of methods for making predictions. In this
connection, a particular reader may be nore interested in some scctions of
this report and less interested in others. We have tried, however, to make

all of the report readable for the entire spectrum of likely readers.

1.2 MAXWELL 'S EQUATIONS

The material media that we shall be dealing with most commonly, air

and soil, are ecesentially non-magnetic; that is, the magnetic permeability

has the valuc i appropriate to free space. Both wmedia are gencrally

10
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é conductive, and the soil has a dielectric permittivity substantially dif-
? ferent from €., the free space value.

The two time-dependent Maxwell equations are then
i >
. BuxiE, (1-1)
3E + 1 ;
] €22 =.-J+-—-VxTB, (1-2)
: t H
f 0

where B is the magnetic field (webers/mz), t is the electric field

(volts/m), and J is the current density (amps/mz). It is clear that these

3~y

equations are sufficient to carry the ficlds forward in time if initial

values are given and if J s specified. From these initial values we can
Q‘ evaluate the right-hand sides of Equations 1-1 and 1-2, which then tell us 1
how E and B will change in the next infinitesimal time interval 6t. 3
b From the new values of E and B we can re-evaluate the right-hand sides
and advance the fields another §t, and so on. This, in fact, is jrecisely 1

how numerical solutions of Maxwell's equations are obtained (the sputial

derivatives in the curl operations are also cvaluated in finite difference

é form) . g
Note that the relation of cause and cffect in this way of looking
] at Maxwell's cquations is different from what most of us were tuught,
. particularly for Equation 1-1. The picture just given is that the vualue of f
iy

'> . . . . v .« 0
Y = I determines how B will change in the next infinitesimal time

o . ) . . . . _')
3 intervul, whereas the traditional picture is that a changing B generates

(inductively) a solenoidal E, i.e., an ﬁ with finite curl. Either

picturce gives the same result, namely that the right- and left-hand sides

are cqual, and we do not actually need to decide which side causes the

other. However, the new picture, which is the one generally used by physicists,

makes it casicr to understund how time-dependent solutions evclve. |

1
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There are two other Maxwell equations,

i
!
e m s B St R Gl k5 e S a1+ mmrr ij

V. -B=20, (1-3)
o ;
Vo o(eE) = p , (1-4) 1
where p is the charge density. It would appear from the foregoing discus- é
. ; . . : |
sion that these equations are not needed in advancing the fields in time. :

Such is indeed the casc, for taking the divergence of Equation 1-1 gives
S B = -V ) =0, (1-5)

(The divergence of the curl of any field vanishes.) This cquation says

that, if Equation 1-1 is satistied, V - ﬁ will be independent of time at

all points 1n space. Thus if V B vanishes everywhere initially, then

the solution of Equation 1-1 will have V - B =0 everywhere at 211 times.
Therefore Bquation 1-3 needs only to be imposed as a condition on the initial
magnetic field. 1f the initial magnetic ficld vanishes, Bquation 1-3 is

satisfied.

To understand the role of Equation 1-4, tuke the divergence of

Bquation 1-2, and obtain

i

) > :
o (Verl) = - Vg (1-0)

s
Now the conservation of charge, which is a well verified law of nature,
states that

Wy, (1-7)

subtracting Equation 1-7 from Equation 1-0 gives

J W o
;)—t (VerE=p) = 0 . (1-8)

Thus it follows from Equation 1-2 that, if the quantity in parenthesoes

vanishes everywhere initially, it will vanish everywhere at all times,

12
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Therefore Equation 1-4 alsu needs only to be imposed as a condition on the
s > . . s .

initial E and p. If E and p both vanish initially, Equation 1-4

is satisfied.

If ﬁ, ﬁ and p all vanish initially, we need only concern ourselves
with Equations 1-1 and 1-2. Note that these equations do not contain o
at all; p nced not be calculated. If p 1is desired, it can be found by

time integration of Fquation 1-7.

Note that Maxwell's equations aud the conservation of charge,

. y . . > > s
Equation 1-7, arec lincar in the variables , P, B and B. Thus if current

S N3

density 31 produces P El and 31, and JZ produces p,, EZ’ and EZ’
ity Te . will produce Bov . Cand Be B
then current density ot J2 will produce P+ Py L1 + LZ and Bl + Bz.

We have assumed here that ¢ (and Hg of course) is the same ir all cascs.
. . . . . . . * >

This lincurity is somewhat restricted in practice when J depends on E,

us we shall sze.

1.3 SOURCE AND CONDUCTION CURRENTS

In EMP problems the current density is made up of two parts. First,
thore is the source current 7g of Compton recoil electrons produced by
the flux of gamma rays, which is the source of the EMP,  Sccond, therc is
the conduction current JC associated with the flow of low-cnergy clectrons

and ions induced by the electric field. The total current is the sum

o > -+
= ¢
J .JS + JC . (1-9)

The Compton current is formed by recoil clectrons that have start-
ing energies of the order of 1 MeV. ‘Thesce clectrons are stopped, in
material media, by inclastic collisions with the media atoms, In air, the
stopping range of the recoil electrons is a few meters. Therefore, if the

C
clectric field E is less than about 107 v/m, the cffect of this field on

13
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range will be small and may be neglected. If the field were 106 V/m, the
range would be substantially affected by the field. The magnetic field B
deflects the recoil electrons. The deflection will be smail if the Larmor
radius is long compared with the stopping range. The Larmor radius is a few

3

meters when B is about 20 gauss = 2 x 10~ wcbers/mz. Thus for magnetic

fields of this size or larger the deflection will be substantial.

In many applications the fields are less than the critical values
just given. 1In these cases we may assume that JS depends only on the gamma
flux and is independent of the fields. 1In cases where the fields are higher,

we shall estimate corrections to JS due to the fields.

In soil, the recoil electron range is only a few millimeters (soil
is about 103 times more dense than air). Here the fields are never large
cnough to affect the Compton curreat. Gamma rays are attenuated by a factor
¢ in 15 to 20 cm of soil. Hence the Compton current is appreciable only in

the top meter or two of the ground.

The conduction current is generally well approximated, in both air

and soil, by Ohm's law,

- .
J, =0k, (1-10)

where o(mhos/m) is the conductivity. In air, o depends somewhat on i,

making Maxwell's cquations nonlinear. We can usuually choose an L-independent

value of o which over-estimates coupling effects. Since the air conductivity

results from ionization produced by the Compton recoil olectrons, o depends
on time and position. In the ground, ¢ is independent of L, cxcept at very
high fieclds where breakdown occurs. [t is also little affected by ionization,
except at very high dose rates. It may be assumed independent of time and
position, but it does depend on the frequency of the driving E-ficld (as

does also ©).  These points will be discussed in detuail in later scctions.
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1.4 A STANDARD FORM FOR MAXWELL'S EQUATIONS

We shall write the dielectric permittivity in terms of the value
for free space,

€= E.E) » (1-11)

[

0

where €. is the relative permittivity. If we also make use of Equations 1-9

and 1-10, the Maxwell Equation 1-2 becomes

R | T SR )
&reo 3t JS OFE + UO VB, (1-12)

It is convenicent to replace € and Hy by two other parameters, nuamely

the speed of light in vacuum,

e o= L A3 108 m/secc , (1-13)
Hofo

and the lmpedance of free space,

"o
2y = | & 120m = 377 ohms (1-14)
0 €4

These equations can be solved for Mo and €y
Wy = LO/C y £y = l/cZO . (1-18)
Inserting these expressions in Equation 12 gives

[ o
l" g)_l i

=720 - Zot+ eV x B (1-16)
R T | ST ) R : B

2
Every term in this cquation now has the dimensions volt/m™; note that ¢B

is the olectric field of a wave in vacuum, as follows from Hquation 1-1.
In the remainder of this report we shall drop the subscript r

P
for Maxwell's cquations is

15

ot will always mean the relative permittivity. Thus our standard form

et i aen SR
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-é—fz - VxBE s (1—17)
: _ - = ’ 3 :

—C— 'a—t' = - Zods - 7OOE + cV x B ., (1—18)

We note here also the relation between the current I{amps) in a wire and

the static magnetic field Be encircling it at radius r,

2ﬂrBe = uOI = ZOI/c or I = 2'rrche/ZO . (1-19)

Finally, note that

ZO/ZW =~ 120m/2m = 60 chms . (1-20)

REFERENCES FOR CHAPTER 1
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1-2.
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CHAPTER 2
THE IMPEDANCE OF SOILS

2. THE RC MODEL

Scott?! measured the conductivity and permittivity of many
samples of soil over the frequency range 102 to 106 Hz. He noticed that
the results correlated quite well with the water content of the soil. e
made mathematical fits to his o and € results as functions of frequency
and water content. In making these fits, he made no attempt to ensure that

(W) and €(w) bear the relation to each other required by causality.

Longmire and Longley?~? noticed that Scott's fits could be refitted
very well by assuming that betwcen opposite faces of the soil sample there
is an RC network of the type shown in Figure 2-1. 1In this network, l/R0
represcents the zero-frequency conductivity, C_ represents the infinitc-
frequency dielectric constant, and the other branches account for the chuange
in ¢ and € with frequency. A good {it was obtained with one such branch
for cach decade in frequency covered, with the time constant Rici of the

relevant branch chosen equal to the reciprocal of the median w in that

Figure 2-1. Network representing soil impedance.
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decade, i.e., (Rici)-] = \[ﬁ; ani, where fj is the frequency at the lower .
end of the decade in question. Thus the products R;C, were chosen

arbitrarily, to cover the frequency range uniformly. The ratios Ri/Cj and

C, were then chosen to fit Scott's ¢ curve. Only one parameter, RO’ :

was then left to fit the o curve, but it was found that a good fit to o
] was obtained. Furthermore, it was noticed that changing the fit for a
soil of different water content was accomplished by scaling all of the

resistors, except RO’ by the same factor and lecaving the capacitors unchanged.

Longmire and Smith?-?

used these results, and data at higher frequencies,
to make a "universal impedonce function'" of soils over the frequency range

10 to 108 1z,

2.2 THE SOIL ADMITTANCE
The Maxwell Equation 1-18 for fieclds varying as IWt (32 = -~ 1)
takes the form
rﬂ? = - szs oV x B , {2-1)
where
- i {.kg": tors _1 2.0
NS Zgu o+ jo-g (meters) Co. (2-2)

In Lquation 2-1 the conduction and displacement currents have been combined

. into tne term on the left. If we define the admittance Y(w) of unit
- . , . ' *
volume of soil by the relation hetween total E-driven current 5F and B
e > .
Jp = YE (2-3)

then obviously

- 7 G _l.]. - 4 WEe e
n==2,Y , Y = 5 U Jweey (2-4)
0

The dimensions of Y  are mhos/meter, whilc those of n arc (metors)_l.

We shall call n the relative admittuance.
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: The admittance of the RC network is
2
; 1 jwC
i ST FN S S S o 2-5
r Vo= ety 2 TR (-5
A U n T nTn
i The real and imaginary parts of Y are related to o and ¢ by Equation y
L 2-4, Defining RC rates Bn by i
h’
: Bz (kG (2-0)
\ n n'n ’ Vo
fd |*§
2 .. . . .
; Reference 3 fits Scott's data by the formulu 'i
f, 13 jwe h
) Y= 0.+ jwc e+ Y a -~—--—-~-~Q—-—— (2-7) o
! y TR ‘ P ‘ - ’,
: ( 0o 1 Jm/Gn -
| :
g llere o, is the zero-frequency conductivity, « = is the infinite-frequency i
‘ . . s . . . | 4
i vrelative permittivity, £y 1s the permittivity of free space in MKS units, ;
] ]
; the Gn arce o fixed set of rates, .
; .
E: n-1 - i
F po= 10" see™ (2-8) -
g and the ag o area set of dimensionless it coelficients.  Vor soll contain. '
f ing 10 percent water by volume the it parameters are piven in Table 2-1.
g
: For this it the relative permittivity and conductivity are
\ 13 ay
) D D R (2-9)
. n=t 1+ (w/h )"
n

i “/
] 15 a o w™ /R

NS Ll (2-10)

n=l 1 + (n\/[".n)w

It can be scen that + decereases while o increases with incrcasing frequoencey,
Graphs of  +  and RPN functions of froquency are piven in Fipgures 2-.0

and 2-3. Figure 2-4 shows how ¢ viaries with water content, and also :
pives the scale factor Fooby which the rates b must be maltiplied tor

diftforent water content,
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Table 2-1. Fit parameters for soil containing 10 percent
water by volume.

3

6, = 8 x 1077 mho/m e =5 (relative)

n a
n an an n n

1 3.40(6) 6 1.33(2) 11 9.80(-1)
2 2.74(5) 7 2.72(0) 12 3.92(-1)
) 131 73(-1)

(
4 3.38(3) 9 4.80(C)
(

5 5.26(2) 10 2.17

This fit is erpected to be good for frequencies between 102 and 108 Hz
for a wide range of water contents. The author has never seen any data that
cannot be fitted reasonably well by this model by adjusting only the assumed
water content and the value of © (to a value that may be different from

0
that indicated by Figure 2-4).

The fit for the relative admittance is, according to Equations 2-4
and 2-7,
jw/c

13
_ sW - . -
n = ZOQO tlDE,* gg% a T jw/Bn , (2-11)

2.3 CAUSALI™Y AND REALITY
The requirement of causality is that the current must vanish until
a field is applied. For example, let E(t) be

E(t) =0 ) t <0,

E(t) = Lge’"  t 20 . (Y= real, positive)
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? The Fourier transform of L is
:
{ o .
: jwt Ey
i N N = . .
: {w) = E(t)e = e ———, 2-13
! b (w) f (et = e (2-13)
?’1 -
; The current density in the frequency domain is then
P
§ :
@ "0
. Jw) = Y(w) ——, 2-14
; @) = Y0 7 (2-14)
t and in the time domain i
P §
{ 1 r EO jwt
: J( = ‘ el ¢ iw . 2-15
() = o f\ @) 7 e dw (2-15)
- f
] For t < O, the integration contour can be extended to enclose the negative
4 imaginary half plane. ‘The factor 1/(y+jw) has a pole at w = jy. If
Y(w) has no poles in the ncgative imaginary half planc, the integral will
. vianish as required, for t < 0. Iaspection of Equation 2-7 shows that the
1 N . . - . . 0
: poles of Y are at w = )Bn. in the positive imaginary half plane. Thus
causality is satistficd. The generually required relation between a physical
4 3 and AL is that they must form the real and imaginary parts of a
F - . . . . . .
3 complex function which. when analytically continued from the real w axis
{ into the negative imaginary halt plane, huas no poles there, Any RC network

provides this property.  Resonances in o and . could be accommodated by

adding inductuances, but it appears that none are neceded.

The fact that the electric fiecld E(t) and the current density
J(tj are real functions of time places another condition on the admittance
Y} and the relative auwmittance n(a). For general real E(t), Equation 2-13

shows that the comvlex conjugate E*(w) is related to E(w) by

E*(o) = Li(-a) . (2-16)
The same relation holds between J*¥e)  and J(w). Since
Y(u) = J)/E(e) (2-17)
24
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it follows that Y

and

Y*() = Y(-w)

n*(w; = n(-w)

8]

From Lquations 2-2 and 2-4,

¢.4

In the early part of the LMP the electric field 1ises approximately

O(~w) =

O (w)

STvrTEmOAaTSE T W

it then follom

*

’ E('(U) =

EX-ONENTIALLY RISING FIELD

also obey the reality condition

that

£ (w)

exponentially to a level fairly ncar the peak field,

Henece

by . One

>

is shown in
of n as a

there 15 no

that contained in Equation 2-11, n(m)

and ni(m)

LE(t) ~ I

ot

OC

it is usceful to evaluate

n  for the case in which

obtains the real expression,

graph of n
figure 2-5,

function of

simple relation between

for w = 1,

ias

The =ame figure shows the reual and imaginary puarts

W

(Acrually,

4

13
4+
n=1

function of

ale

o

U e
nl+ OL/Bn

for the 10 percent water soil

for the oscillatory casc.

na)

n ()

and

is a

.
'

()

Jw

(2-18)

(2-19)

(2-20)

is replaced

(2-21)

Note that while

and

i(m), exeept

is not far from the sum of nr(m)

little less than the sum.)

We shall call the case graphed in lgurc 2-5 our standard soil.
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